In situ atomic-scale imaging of phase boundary migration in FePO(4) microparticles during electrochemical lithiation.

نویسندگان

  • Yujie Zhu
  • Jiang Wei Wang
  • Yang Liu
  • Xiaohua Liu
  • Akihiro Kushima
  • Yihang Liu
  • Yunhua Xu
  • Scott X Mao
  • Ju Li
  • Chunsheng Wang
  • Jian Yu Huang
چکیده

The electrochemical lithiation of FePO4 particles is investigated by in situ high-resolution transmission electron microscopy (HRTEM), and the anisotropic lithiation mechanism is directly observed. For the first time and in contrast to the previous post mortem HRTEM observations, a sharp (010) phase boundary between LiFePO4 and FePO4 is observed, which migrates along the [010] direction during lithiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Situ Atomic-Scale Imaging of Phase Boundary Migration in FePO

Orthorhombic Li x FePO 4 (0 ≤ x ≤ 1) system has attracted much attention for its application as a high power cathode material in lithium ion batteries. [ 1 ] Although the performance of this material has been greatly improved by cation doping, surface coating and size reduction, [ 2–4 ] the fundamental phase transformation mechanisms accompanying lithiation/delithiation are still controversial....

متن کامل

In situ atomic-scale imaging of electrochemical lithiation in silicon.

In lithium-ion batteries, the electrochemical reaction between the electrodes and lithium is a critical process that controls the capacity, cyclability and reliability of the battery. Despite intensive study, the atomistic mechanism of the electrochemical reactions occurring in these solid-state electrodes remains unclear. Here, we show that in situ transmission electron microscopy can be used ...

متن کامل

Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars

Silicon is one of the most promising anode materials for use in rechargeable lithium-ion batteries due to its high theoretical specific capacity of 4200 mAhg 1 and low cost. However, this high lithium storage capacity results in enormous volume expansion and contraction during electrochemical lithiation and delithiation, which can induce mechanical fracture and severe capacity fading. Recently,...

متن کامل

The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

icle as: M.T. McDow hiation/delithiatio Abstract Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon n...

متن کامل

In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.

Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 25 38  شماره 

صفحات  -

تاریخ انتشار 2013